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Abstract
A new equation of state for solid UO2+x is presented, based on an extended
ionic model. A thermodynamic description of the imperfect and non-
stoichiometric ionic solid is obtained accounting for short- and long-ranged
inter-ionic forces, as well as for formation of Frenkel defects. Both Coulomb
and short-range interactions between defects are encompassed in a highly
non-ideal ionic system where interactions of Frenkel defects are taken into
account explicitly as short-ranged interactions of quasi-dipoles. A simplified
analytical form for the free energy of the perfect anharmonic crystal was
obtained and then combined with additional contributions from formation and
interaction of defects. By fitting a few numerical constants, the variations of
thermodynamic properties of UO2+x are predicted as functions of temperature,
density and stoichiometry. The model describes the pre-melting transition into
the superionic state in solid stoichiometric UO2 and predicts the behaviour of
the transition line in the non-stoichiometric domain.

1. Introduction

In the current Sixth Framework Programme of the European Commission, under the thematic
priority ‘Safety of nuclear fuel’, the high temperature thermodynamic properties of uranium
dioxide are being investigated in the Joint Research Centre. Though this matter is of
primary importance for current reactor accident analysis, insufficient data are available not
only for complex thermochemical systems including fuel and structural materials, but also
for the simpler non-stoichiometric uranium dioxide system. For instance, recent results of
melting experiments on hyperstoichiometric uranium dioxide, carried out with new, advanced
techniques [1, 2], provide evidence for relevant differences of the solidus and liquidus curves
compared with the scanty pre-existing data obtained more than three decades ago [3]. If one
considers that the current thermodynamic models for the high temperature behaviour of the
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solid solution UO2+x [4, 5] have been constructed by fitting these old, probably inaccurate
data, it appears that a realistic equation of state (EOS) of this system based on wide ranging
assumptions is necessary to consolidate the resultant new views. The work reported in this
paper represents a first step towards a more accurate definition of the high temperature phase
diagram and thermodynamic properties of non-stoichiometric uranium dioxide.

For the description and extrapolation of experimental data in solid phases of pure metals,
ionic and molecular crystals at high temperatures, equations of state are mostly utilized, based
on the well known Mie–Grüneisen approach [6]. However, these phenomenological EOSs
cannot be directly applied to multi-component systems such as non-stoichiometric compounds
or metallic alloys, since this approach is essentially limited by the constraint of constant
composition. On the other hand, the thermodynamic properties of non-stoichiometric oxides,
especially their phase diagram, demonstrate unusually complex behaviour (see the excellent
review in [7]) and require more sophisticated methods for description and explanation.
Furthermore, ionic crystals at high temperatures may be effectively imperfect even under
stoichiometric conditions, for instance, by exhibiting peculiar features such as a phase
transition into a superionic state at a temperature somewhat below the melting point. This
transition is caused by the increasing instability in the oxygen sub-lattice with temperature,
and is closely related to changes in the formation energy of Frenkel defects. Simple models
for description of this transition have been formulated in terms of the ideal lattice gas [7] or
Debye–Hückel approximation [8, 9] and, therefore, are intrinsically deficient in describing
real ionic solids near their melting point. Owing to the complexity of the problem, a wide-
range EOS for these solids is still missing.

The aim of this paper is to demonstrate the applicability of an alternative approach,
essentially based on statistical thermodynamics of solids, which can be extended to non-
stoichiometric compounds and used for explanation and prediction of their phase behaviour.

Based on the previous considerations, it appears that the thermodynamic properties of
UO2±x are mostly defined by the features of the anion sub-lattice and by the cation capability
to adapt the valence to the given oxygen defect configurations. In this respect, the more
energetic cation vacancies and interstitials are expected to play a secondary role—which is
also confirmed by the analysis of the high temperature behaviour of the heat capacity that
can be almost entirely interpreted in terms of oxygen defect formation. For large hyper-
stoichiometry compositions, approaching the high temperature boundary of the fcc solid
solution, it might be necessary to consider additional aspects connected with the emergent
role of U(6+). However, experimental data in this domain are missing, so that a self-consistent
equation of state accounting for sole oxygen defects provides the most appropriate ground
for possible extensions, if these are needed. Therefore, a simplified analytical form of such
an EOS is presented, which, after fitting of few numerical constants, does reasonably well
reproduce the solid-state properties of non-stoichiometric UO2+x , including the pre-melting
transition. Density, enthalpy, entropy, heat capacity, compressibility and thermal expansion of
solid UO2±x as well as the oxygen potential are calculated in a wide range of temperature and
stoichiometry x = O/U − 2 and compared with existing experimental data and computer
simulations of solid UO2±x . Furthermore, if combined with recent theoretical models
for the uranium dioxide fluid state, it can be used to predict liquid/solid and vapour/solid
equilibrium [10].

2. Composite model EOS for non-stoichiometric solid

Solid uranium dioxide is known to behave as an essentially ionic system, which can be treated
as a fluorite lattice occupied by uranium cations U(n+), n = 3, 4, 5, and doubly charged
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Table 1. Components of the chemical model for imperfect and non-stoichiometric UO2±x .

Index Component description Ni/NU

0 VL Oxygen lattice vacancy ϕ

1 O(2−)
i Interstitial oxygen anion ϕ + x

2 O(2−)
L Oxygen on lattice site 2 − ϕ

3 U(3+) Trivalent uranium cation ε − x

4 U(4+) Tetravalent uranium cation 1 − 2ε

5 U(5+) Pentavalent uranium cation ε + x
6 Vi Non-occupied interstitial site 1 − ϕ − x

oxygen anions O(2−) [7]. We shall use here the form of the free-energy equation of state,
which was successfully applied to fluid urania [11]. Its salient features are summarized as
follows:

Oxygen enrichment (x > 0) or depletion (x < 0) of crystalline UO2 creates a solid
solution UO2+x with at least two new features:

• additional vacancies (at x < 0) or additional interstitial ions (at x > 0);
• more U(3+) at x < 0 or more U(5+) (at x > 0).

In table 1 are presented the adopted notations. The last column contains the expressions for
the concentrations of all components in terms of three independent variables:

• non-stoichiometry parameter x ,
• concentration of vacancies ϕ, and
• electronic excitation parameter ε describing the equilibrium in the disproportionation

U(5+)/U(3+) (see equation (8) below).

The Helmholtz free energy (per uranium ion) of the imperfect non-stoichiometric UO2+x

within the composite chemical model [11] consists of contributions from ideal lattice gas4,
Coulomb and repulsive forces:

F(T, ρ, x, ϕ, ε) = F (id)
lat + �F (C) + �F (R), (1)

T is temperature; ρ = NU/V is the number density. Both Coulomb and short-range
contributions in equation (1) respectively contain two different terms:

�F (C) = �F (C)
0 + �F (C)

x,ϕ,ε, and

�F (R) = �F (R)
0 + �F (R)

x,ϕ,ε.

The first contributions �F (C)
0 and �F (R)

0 account for the interactions of ions placed in perfect

lattice sites and are, conceptually, the same as in a perfect crystal. The terms �F (C)
x,ϕ,ε and

�F (R)
x,ϕ,ε express the Coulomb and short-range interactions of defects.
Explicit expressions for these contributions to the free energy of a non-stoichiometric

solid are presented and discussed below. Equations for pressure P (compressibility factor
Z ), entropy S, internal energy E , thermal expansion αT , isothermal βT and adiabatic
compressibility βS as well as isochoric CV and isobaric CP heat capacities may be derived
from the above equations through standard thermodynamic relations.

4 Hereinafter, ‘ideal’ means ‘non-interacting’, whilst we shall use the term ‘imperfect’ for a lattice containing
defects.
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3. Defect formation and disproportionation equilibrium

The free energy of an ideal but imperfect lattice gas for one uranium ion can be written in the
form

−β F (id)
lat = (3 + x) ln ρ + (ε − x) ln Q(3+)

U + (1 − 2ε) ln Q(4+)
U

+ (ε + x) ln Q(5+)
U + (2 + x) ln Q(2−)

O + δSlat, (2)

where β = (kT )−1 is the inverse temperature, k is the Boltzmann constant,

δSlat = 2 ln 2 − 3 −
6∑

i=0

yi ln yi (3)

is the additional contribution to entropy, yi (i = 0, . . . , 6) are the concentrations of all the
components defined in the last column of table 1, and Q(±Zi)

i are the ionic internal partition
functions.

Since ϕ and ε are internal variables of the model, their values may be determined directly
from the minimum of the Helmholtz free energy:

∂ F(T, ρ, x, ϕ, ε)

∂ϕ
= 0;

∂ F(T, ρ, x, ϕ, ε)

∂ε
= 0.

(4)

The variational equation (4) leads to mass action law equations for two independent
reactions:

• formation of Frenkel defects,

O(2−)
L + Vi ←→ O(2−)

i + VL, (5)

and
• uranium disproportionation,

2U(4+) ←→ U(3+) + U(5+) (6)

in the following form:

ϕ(ϕ + x)

(2 − ϕ)(1 − ϕ − x)
= Kϕ(T, ρ, x, ϕ, ε), (7)

ε2 − x2

(1 − 2ε)2
= Kε(T, ρ, x, ϕ, ε). (8)

Here

Kϕ = exp

{
−β

∂(�F (C) + �F (R))

∂ϕ

}
(9)

and

Kε = Q(3+)
U Q(5+)

U

(Q(4+)
U )2

exp

{
−β

∂(�F (C) + �F (R))

∂ε

}
(10)

are ‘equilibrium constants’ of defect formation and disproportionation reactions, which are
actually implicit functions of temperature, density and elemental composition of solid.

According to the conventional quasi-chemical approach (see, e.g., [7, 12]), the
equilibrium constants Ki = {Kϕ, Kε} are presumed to depend on temperature only,
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i.e. ln Ki = Hi/RT + Si/R; the quantities Hi and Si correspond to empirical constants5

that are treated as heat and entropy of reaction.
On the other side, according to the variational method, one can calculate the equilibrium

constants equations (9) and (10) along with all other properties of an imperfect solid, by
knowing the same set of model parameters.

4. Oxygen potential

The central point in the investigation of non-stoichiometric oxides is the determination of the
so-called ‘oxygen potential’

�GO2 = RT ln PO2, (11)

which is simply related to the usual chemical potential of molecular oxygen:

�GO2 = µO2 − µ0
O2

.

Here µ0
O2

is the ideal-gas value of the chemical potential at a given temperature and standard
pressure (P = 1 bar).

The oxygen potential can easily be derived in terms of ionic chemical potentials if one
considers the reaction related to the evaporation of oxygen [12]:

2O(2−) + 4U(4+) = O2(gas) + 4U(3+), (12)

or from the above equation of disproportionation equilibrium reaction:

2O(2−) + 2U(5+) = O2(gas) + 2U(3+). (13)

The last equations imply

µO2 = 2µO(2−) + 4µU(4+) − 4µU(3+) (14)

or

µO2 = 2µO(2−) + 2µU(5+) − 2µU(3+) . (15)

All the chemical potentials on the right side of this equation can be derived straightforwardly
from the free energy equation. One can also express the oxygen chemical potential using the
T, ρ, x, ϕ, ε variables as follows:

µO2 = 2
∂ F(T, ρ, x, ϕ, ε)

∂x
. (16)

From substituting the above equations into equation (11) one finally gets the general
expression for the pressure of molecular oxygen in terms of the adopted EOS:

ln PO2 = −βµ0
O2

+ 2β
∂ F (T, ρ, x, ϕ, ε)

∂x

= βG0(T ) − 2 ln ρ + ln

[
(ε + x)(ϕ + x)

(ε − x)(1 − ϕ − x)

]

+ 2

[
∂β�F (C)

∂x
+ ∂β�F (R)

∂x

]
. (17)

Here we have

βG0(T ) = ln QO2 − 1 + 2 ln

[
Q(5+)

U Q(2−)
U

Q(3+)
U

]
. (18)

5 To be determined from experimental data on vacancy formation or oxygen equilibrium partial pressure.
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5. Short-range and Coulomb contributions for ideal solid

The EOS for a perfect one-component crystal with short-range particle interactions is very
well known. Due to the importance of anharmonic effects at high temperatures we adopt here
the expression for the free energy [13]

F = F (id)
lat + U (0) − NkT ln(υf/υ) − NW + · · · (19)

and pressure

P = P(0) + kT/υ + kT
∂

∂υ
ln (υf/υ) + ∂

∂υ
W + · · · , (20)

where F (id)
lat is the ‘ideal-lattice’ free energy of non-interacting particles placed into sites of a

static lattice, U0 is the energy of the static lattice and

P(0) = −∂U (0)

∂V
(21)

is the so-called ‘cold pressure’, created by forces acting between particles fixed in the static
lattice. The term W indicates a pair correlation coefficient that will be discussed below.

The first-order thermal contributions of pressure and free energy are defined in terms of
the ‘free volume’ function:

υf =
∫

exp{−βU1,0(�x)} d�x . (22)

Here �x = |�q − �q(0)| is a particle displacement vector, and the integration is carried over
all possible displacements of a particle from the lattice site; U1,0(�x) is the one-particle
potential energy within an elementary cell. The free volume is a function both of density and
temperature, and plays a key role in the theory of thermodynamic properties of crystals [16]
as well as in approximate quasi-crystalline theories of liquids [17].

Second-order corrections to the free energy are expressed through pair correlation terms
W̃ , which are nearly constant and contribute mainly to entropy [13].

Near the melting point, the anharmonic effects are very important even in a perfect
crystal [13], but some principal features of their thermal behaviour can be understood by
using the so-called quasi-harmonic approximation [16], where the free volume is a simple
power function of the elastic constant α (ρ):

υ
(h)
f =

(
πkT

α (ρ)

)3/2

. (23)

Anharmonic contributions principally affect thermal expansion and heat capacity, whose
properties may be described [13], within a first order theory, by using (even for highly
anharmonic crystals) only one or two terms in the expansion of the free volume in powers
of temperature:

υf = υ
(h)
f

(
1 + a1 (ρ) T + a2 (ρ) T 2 + · · ·

)
. (24)

A general formulation of the anharmonic corrections for arbitrary inter-particle potentials,
as derived in [13], can be obtained if the inter-particle potential is known. We adopted6 the
following approximation for the logarithm of the free volume function:

ln υf = ln υ
(h)
f + a1 (ρ) T +

(
a2 (ρ) + 1/2a1 (ρ)2

)
T 2 + · · · . (25)

6 We neglect here the explicit dependence of elastic constant on slow-varying Coulomb forces.
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For the inverse-power inter-ionic repulsion potential

�(R) (r) = An

rn
(26)

the reduced free energy β F (R)
0 is one parametric, depending only on the variable z =

{βα∗ (ρ)}−1.
Hence the resulting equation for the repulsive contribution to the EOS of the ideal crystal

is

β F (R)
0 = βU0(z) + 1 − 3/2 ln(z) − A1z − A2z2 − w̃. (27)

Here we have A1 = a1α
∗/k; A2 = a2(α

∗/k)2 + A2
1/2; w̃ = βW is the dimensionless pair

correlation contribution7. The quantity

βU0 = 3π Sn

n(n − 1)Sn−2z
(28)

is the repulsive contribution to the energy of the static lattice, and α∗ (ρ) = α (ρ) a2 is the
reduced elastic constant:

α∗ (ρ) = An
n (n − 1)

6an+2
Sn+2 = Cnρ

n
3 (29)

where Sn = ∑
j>1(

a
R1 j

)n are lattice sums [17].
Due to strong Coulomb attraction, neighbour ions are so close to one another that their

electron shells significantly overlap. The Coulomb contribution �F (C)
0 corresponding to the

zero-order approximation, i.e. to an ideal perfect crystal, is adequately represented by the
Glauberman–Yuchnovsky potential [18]:

�F (C)
0 = −M

e2 Z (4+)Z (2−)

4πε0a
(1 − e−bV 1/3

). (30)

Here M is the Madelung constant, a is the lattice parameter and b is a screening constant
treated below as an adjustable parameter.

6. Coulomb interaction of defects

Coulomb interaction of defects is complicated and its formulation is still a not well understood
problem. On the one hand, defects belong to the lattice structure and should therefore be
treated with conventional methods of solid-state physics. On the other hand, defects are
relatively free to move and should be regarded, in a certain sense, as an ionic fluid component.
The primary idea of the approximate method we used in this work is as follows: all charged
species in the non-stoichiometric imperfect ionic solid are initially regarded as they would be
in the fluid state. Thus, the Coulomb free energy of a ionic fluid mixture can be written in the
form (see [10, 11] for details and references therein)

β�FC = φ()

72η
;  ≡ 〈d〉

rD
; r−2

D = e2

ε0V kT

6∑

α=1

Nα Z2
α. (31)

In equation (31) and hereafter rD is the Debye radius,  the Coulomb parameter, φ () a
single-parameter (but quite general) Coulomb interaction function, η = πn〈d〉3/6 the packing

7 Note that in the quasi-harmonic approximation w̃ does not depend on temperature and, therefore, is treated here as
a constant.
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fraction, σi the effective diameters of the charged particles (ion or vacancy) and 〈d〉 the mean
size of the particle, defined by

〈d〉3 =
∑

i Niσ
3
i∑

i Ni
. (32)

The value of the Coulomb parameter  in the condensed ionic phase is very high ( ≈ 40
in liquid UO2 near the melting point at Tm = 3120 K [11]).

The Debye–Hückel limiting law (DHLL): β�F (C)
DHLL = −3 appears to be very far from

reality at such high densities. Much more accurate results of the integral equation theory [15]
at  	 1 can be approximated by using the simple power form:

72ηβ�F (C) ≈ −1.272.12. (33)

Since the concentration of defects is much lower than the concentration of lattice anions and
cations, we can define a dimensionless parameter δ from 2 = 2(x = ϕ = ε = 0)(1 + δ) or

δ =
∑

i=0,1,3,5

Ni Z
2
i

(
∑

i=2,4,6

Ni Z
2
i

)−1

which is smaller than unity. Indices 0, 1, 3 and 5 correspond to all charged quasi-particles
considered as defects (see table 1). Expanding the free energy equations (31) and (33) in
powers of this parameter we get:

�F (C) = �F (C)
0 (1 + δ)1.06 ≈ �F (C)

0 + 1.06�F (C)
0 δ + · · · . (34)

We assume �F (C)
0 to be a sum of interactions of type equation (30) for all ionic pairs

considered in the regular lattice sites. At the same time, we retain the ‘fluid-like’ form of
the second term in equation (34).

Note that the term in equation (34) linear in δ is proportional to −V −0.06T −1.06. This
volume dependence of �F (C)

0 is small but not negligible. The weak decrease of this term
with increasing volume corresponds to the slight increase of the (negative) energy of Coulomb
interaction between defects with increasing density. This explains the observed increase in
density of the solid with the U/O ratio8.

According to equation (34), the Coulomb contribution to the Helmholtz free energy
formally depends on the effective charges of all species (e.g., for UO2+x it includes seven
values of effective charge, Z0 . . . Z6). However, not all of them can be regarded as
independent parameters.

Applying the electro-neutrality condition together with the requirement of invariability of
the effective charges Z i, we obtain four additional constraints and, hence, only three effective
charges (e.g., for UO2+x , Z2, Z3 and Z4 may be used as EOS parameters). The final equation
for the Coulomb contribution to the interaction of defects has the following form:

�F (C)
x,ϕ,ε = �F (C)

0 (V0)

(
Z4

4

)2 (
V0

V

)0.06 (
Cx x + Cεε + Cϕϕ

)
, (35)

8 See the kink of the non-stoichiometric solid density as a function of temperature in figure 1.
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Figure 1. Density of non-stoichiometric UO2 solid. The kink of the ρ(T ) dependence is
associated with the Coulomb interaction of defects.

where V0 is an arbitrary reference value of volume. For UO2+x , three coefficients Cx , Cε , and
Cϕ , are determined by three effective charges Z2, Z3 and Z4:

Cε = (Z4 − Z3)
2

2Z2 Z4 + Z2
4 + 3Z2

2

;

Cϕ = 2(Z4 − Z3)(3Z2 − 2Z3 + 3Z4)

2Z2 Z4 + Z2
4 + 3Z2

2

;

Cx = 2(Z4 − Z3)(2Z5 − Z3 − Z4)

2Z2 Z4 + Z2
4 + 3Z2

2

.

(36)

7. Anharmonic effects in imperfect crystal

Formation of Frenkel defects is related to effective displacements of ions comparable, in the
order of magnitude, with the lattice parameter a. The variation of the potential energy in such
displacements cannot be described within the model of quasi-harmonic forces. Furthermore,
vacancy formation affects the crystal force field in such a way that the usual anharmonicity
phenomena considerably change.

Short-range repulsion forces in an ideal lattice determine the anharmonicity of the crystal
force field. Usually, this contribution is negative and inversely proportional to the elastic
constant, leading to a small negative effect on the heat capacity [15]:

β�F (R)
anh = −A1z ∼ −T/α (ρ) ;

A1 > 0 �CV anh < 0.
(37)

Apart from displacements of adjacent ions from the equilibrium positions, the anharmonic
contribution to the force field is changed by formation of vacancies. The potential becomes
‘flatter’, and the sign of the anharmonic contribution changes. We adopt here the following



1236 E Yakub et al

simplified form for additional anharmonic contribution, proportional to the concentration of
vacancies:

β�F (R)
anh = −(A1 + α1ϕ) z;

A1 > 0; α1 < 0.
(38)

Here α1 is treated as an empirical constant to be fitted from existing experimental data.

8. Short-range interaction of defects

Coulomb interaction of defects is the principal, but not sole, contribution to the defect
interaction. Another important kind of interaction is due to the short-range component of
the inter-ionic forces. We consider a vacancy as a quasi-particle having short-range attractive
interaction with neighbouring ions, and an interstitial as an additional centre of short-range
repulsion placed in a non-occupied interstitial site.

Short-range interaction of two Frenkel defects is very much like the interaction of two
electric dipoles. Two interstitials, as well as two vacancies, repel whilst vacancies and
interstitials attract each other. Contrary to point charge interaction, electric dipole interaction
decreases very fast with increasing distance. For an inverse-power site–site interaction, the
‘dipole–dipole’ pair potential9 has the form

�(r, θ1, θ2, φ) = n(n + 1)An

rn+2 (2 cos θ1 cos θ2 − sin θ1 sin θ2 cos φ) . (39)

Here θ1, θ1, and φ are the polar and azimuthal angles between the axes of two quasi-dipoles.
This short-range interaction is actually important only for nearest interstitial ions and

vacancies. Long-ranged Coulomb interaction is responsible for the energy of the defect
formation, but their mutual orientation is sensitive to the short-range interaction. Two quasi-
dipoles tend to orient themselves, whenever it is possible, as electrical dipoles do: ‘head
to tail’. Yet, the constraints imposed by the lattice do not allow them exactly this orientation
since there are only a few possible directions for the axis of quasi-dipoles, e.g. along the spatial
crystalline directions of the cubic structure. For an isolated defect four possible orientations
are equally probable. Formation of a vacancy promotes the displacement of neighbouring
ions, and the probability of formation of a second defect in the vicinity of the existing one
increases.

The contribution of the interaction of two neighbouring defects to the free energy of the
imperfect crystal is negative. At the same time, the higher the concentration of defects, the
larger is the positive contribution to the interaction of quasi-dipoles in their non-favourable
orientations. The accurate theoretical description of the defect formation and interaction in
non-stoichiometric solids is a problem still to be solved. In the next section we describe a new
model for description of interaction between defects, which was previously proposed by the
authors [19].

9. Defect interaction and order–disorder transition

Experimental evidence on the nature of the oxygen defect interaction in UO2 is firstly
provided by their pronounced tendency to form complexes [7, 20]. In the hyperstoichiometric
dioxide solid solution up to moderately high temperatures, these interactions cause formation

9 It should be noted that the distance between vacancy and interstitial forming a Frenkel defect is always comparable
with the distance between centres of interacting defects. Therefore, the scheme of point dipoles can be applied only
for qualitative estimations.
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of phases characterized by ordering of the extra oxygen atoms in anion superstructures with
cell sizes as large as four times that of the fcc cation lattice.

Furthermore, in the stoichiometric dioxide the enthalpy versus temperature curve at high
temperatures indicates an excess contribution that was initially attributed to oxygen defects
created by a single-energy thermally activated process [21]. The effective role of oxygen
defects was confirmed by neutron diffraction studies showing an upswing in the oxygen
Frenkel pair concentration at temperatures between 2000 and 2700 K [22]. It was, however,
Bredig [23] who, after examining the local trend of H = H (T ) in the range 2600–2700 K
suggested the presence of a lambda transition at 2670 K. Since the defect concentration
increase across this transition was as high as 20–30% of the oxygen sub-lattice sites, he
considered this effect as a pre-melting transition produced by co-operative interactions of
oxygen Frenkel pairs. This transition separates a high-temperature crystal state characterized
by a large disorder in the anion sublattice from the ‘ordered’ low-temperature state, where the
concentration of defects obeys the ‘regular’ thermodynamic equilibrium.

In fact, these phenomena are not rare in ionic crystalline solids (especially in those
crystallizing in a fluorite or anti-fluorite lattice) and are mostly experimentally observed in
the form of superionic conduction transitions.

The analysis of these effects presents some difficulties, as the classical Debye–Hückel
shielding theory is unable to correctly reproduce the experiment. Thus more complex
formulations of defect interactions have been proposed. It was, however, realized that in
all cell models the distance of closest approach together with the Debye length represent the
crucial quantities [24]. A copious literature has been published on this subject. Available
microscopic models were therefore tested and applied to describe the pre-melting transition
in UO2. These models are essentially based on semi-empirical expressions of the defect
free energy of formation, containing a negative interaction term varying with the defect
concentration [25–27] or with the hydrostatic strain produced by the defects [28].

More comprehensive evidence on the pre-melting transition in UO2 was later provided
by the work of Hiernaut et al [8] and Ronchi [29], where the behaviour of Cp across the
transition was detected by a thermal arrest method in samples of different stoichiometry.
These experiments showed that in the stoichiometric dioxide a sharp transition occurs at
2670 K, whilst no heat capacity singularity is observed in the hyperstoichiometric oxide. On
the other hand, for hypostoichiometric compositions a sharp transition was detected at higher
temperatures (up to 2950 K).

These authors explained the behaviour of the pre-melting transition in UO2+x adopting
a mean-field model where the defect interaction was expressed as a quadratic term in their
concentration, and the coupling coefficient was fitted to produce a second-order transition
at 2670 K in the stoichiometric oxide. Application of the model to non-stoichiometric
compositions leads for x > 0 to the disappearance of the transition with a broadening of the
heat capacity peak. For increasing x this peak continuously evolves from the Cp singularity
occurring at x = 0 (we call this process ‘diffusive transition’ since its behaviour is analogous
to that of a system whose partition function for internal energy is defined by two states
separated by an energy gap of the order of magnitude of kT ). On the other hand, for x < 0 a
discontinuity of the defect concentration across a distinct temperature is predicted, indicating
the occurrence of a first-order transition.

Though apparently successful in describing the features of the Bredig transition in the
non-stoichiometric oxide, the formulation of this model presents the evident shortcoming
that the assumed defect contribution to internal energy is supposed to describe defect long-
term interactions without any explicit account of short-range interactions. Consequently, in
its basic formulation the model predicts defect concentrations well above the experimental
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values. In response to this, the aforementioned authors included in the configurational entropy
a phenomenological ‘site-blocking’ parameter [30] simulating the effect of repulsive short-
range interaction.

A more straightforward approach is assumed here, based on the considerations of the
preceding section, where it is shown that the short-range interactions can be described with a
tractable formalism deduced from simple physical hypotheses. To reproduce the physical
picture described in terms of quasi-dipole interactions, one should take into account, at
least, pair and triple interactions of defects, i.e., represent the contribution of the short-range
interaction of defects in stoichiometric solid as

β�F (R)
int = −A2ϕ

2 + A3ϕ
3. (40)

The pair interaction is proportional to ϕ2, and corresponds to the attraction of quasi dipoles,
while the triple one is proportional to ϕ3 and describes the repulsion effect (we suppose
that both coefficients A2 and A3 are positive). As the concentration of vacancies increases,
the (negative) value of β�F (R)

int decreases, its magnitude reaches a minimum at some
concentration ϕmax and at a concentration ϕ0 turns again to zero. At this concentration the
short-range attraction between quasi-dipoles in favourable orientations is counterbalanced by
the repulsion of quasi-dipoles in non-favourable orientations. At higher concentrations, the
total short-range defect interaction become positive, i.e., repulsion dominates.

We use the simplest analytical form for A2 and A3 compatible with general properties of
the inter-defect interaction described above, namely

A2 = A20 + A21/kT, (41)

A3/A2 = B � constant, (42)

where constants A20, A21 and B must be deduced from existing experimental data10.
We applied here an additional simplification by setting A3/A2 = 2 − x . This choice

corresponds to the minimum of β F (R)
int at ϕmax = 1/3 for stoichiometric solid, and gives the

following expression for the equilibrium constant of vacancy formation:

K (2)
ϕ = K (1)

ϕ (T, V ) exp
{

2A2(T )
(
ϕ − 3ϕ2

)}
,

where

K (1)
ϕ (T, V ) = exp

{
S(1) − Cϕ

�F (C)
0 (V0)

kT
×

(
Z4

4

)2 (
V0

V

)0.06

− α1z

}
(43)

is the equilibrium constant equation (9) calculated without the contribution of short-range
inter-defect interaction. It plays the role of the ideal-gas equilibrium constant, while function
K (2)

ϕ (T , V , ϕ) is the real equilibrium constant in the model (with interaction of defects). S(1)

is the entropy of defect formation:

S(1)
ϕ =

(
∂α (ρ, ϕ)

∂ϕ

)

ϕ=0
+

(
∂w̃

∂ϕ

)

ϕ=0
, (44)

�F (C)
0 (T, V0) is the Coulomb contribution equation (30) to the energy of the ideal crystal (per

uranium ion) at the reference volume V0, Cϕ is defined by equation (36), α1 is the vacancy
contribution to the anharmonic correction, z = {βα∗ (ρ)}−1 and α (ρ) is the elastic constant
equation (29).

The parameters α1 and Cϕ , even if fitted, are not independent empirical constants (as
in conventional quasi-chemical models [12]) but must be seen as free energy parameters,

10 Within this model, we neglect the density dependence of constants A20 and A21 and set the value B = 2 (for
stoichiometric UO2).
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Figure 2. Equilibrium constants of defect formation in non-stoichiometric solid.

whereby their values obviously also affect other solid properties. For example, the entropy of
the stoichiometric solid depends on the value of α1 and the heat capacity is strongly affected
by the value of Cϕ . This gives us an additional mean to check the self-consistency of the
model.

It is possible to fit the parameters in equation (43) to reproduce empirical values of
equilibrium constants Kε and Kϕ known from literature [7, 12, 31] and then use them
to predict other properties of the solid. Thus the model self-consistency was checked
after choosing different sets of parameters to describe the temperature dependence of the
equilibrium constants.

Two sets of parameters are compared in figure 2 respectively proposed by Hyland [12]
and by Babelot et al [31]. The disagreement between the two estimates is remarkable.
Though starting from almost the same values of the reaction heat, they differ by four orders
of magnitude in the equilibrium constant. At low temperatures, far from the λ-transition,
Hyland’s version of the model gives much less satisfactory predictions of entropy and heat
capacity than the model calibrated according to the recommendations of Babelot et al [31].
At the same time, the low-temperature data on oxygen potential as a function of O/U at small
stoichiometry deviations are in better agreement with the recommendations of Hyland [12].
Keeping in mind the priority requirement of self-consistency of the model applied, we do not
include below the recommendations of [12] as an essential constraint.

Using the equation of mass action law, equation (7), we can solve it with respect to x :

x = 1 − ϕ − ϕ

ϕ + (2 − ϕ) K (1)
ϕ exp

{
2A2

(
ϕ − 3ϕ2

)} .

The x(ϕ) function behaves like the well known van der Waals isotherm P(V ). At low
temperatures (or at large values of K (1)

ϕ ) the x(ϕ)-relationship becomes non-monotonic: it
decreases abruptly for small values of ϕ, then reaches a minimum, it increases again until
it reaches a maximum, and finally decreases to the asymptote x = −ϕ at larger values of
ϕ. Thus, at some intermediate temperature (or at some intermediate value of K (1)

ϕ ) the x(ϕ)
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function behaves like the critical van der Waals isotherm. Two ‘critical conditions’ are held
for a certain value x = xC:(

∂x (ϕ)

∂ϕ

)

ϕ=ϕC

= 0; (45)

(
∂2x (ϕ)

∂ϕ2

)

ϕ=ϕC

= 0. (46)

This ‘critical point’ is a location of a second-order phase transition akin to the λ-transition
in fluorite structures. Since, according to the experimental observation, this transition takes
place in stoichiometric UO2, we can add the third ‘critical condition’:

xC = 0 and TC = 2670 K. (47)

The equations for the three critical conditions equations (45)–(47) were solved to determine
three unknown parameters of the model, K (1)

ϕ , A2 and ϕC:
(

K (1)
ϕ

)

ϕ=ϕC
= ϕ2

C

(1 − ϕC) (2 − ϕC)
; (48)

A2 = 4 − 3ϕC

2ϕC
(
2 − 15ϕC + 19ϕ2

C − 6ϕ3
C

) . (49)

We obtain the value of ϕC as the solution of the algebraic equation:

54ϕ4
C − 210ϕ3

C + 273ϕ2
C − 120ϕC + 8 = 0.

Substituting the result into equations (48) and (49), we get finally

A2 = 25.5834;(
K (1)

ϕ

)

ϕ=ϕC
= 1.614 46 × 10−4,

ϕC = 0.080 5228;
This value of the ‘critical concentration’ of Frenkel defects ϕC is in good agreement with the
neutron diffraction data [22].

10. Frenkel disorder: phase transition and phase equilibrium

The second order transition in stoichiometric uranium dioxide is an assumption inferred from
experimental observations. Furthermore, if the model is applied to non-stoichiometric oxides,
the predictions are qualitatively in agreement with the results of Hiernaut [8]. However,
the question of whether or not the phase transitions predicted by the model coincide with
the observed transitions in UO2+x is not a simple one. Stability or instability of the
oxygen sublattice in given experimental situations depends not only on the behaviour of
its free energy, but also on the interrelation of characteristic times of measurement and
diffusion related phenomena. If the time of experiment τM is essentially shorter than the
characteristic diffusion time τD, phase transitions in solid occur like polymorph transitions in
one-component crystals related to loss of stability of existing crystalline structure, i.e., almost
instantly, without separation into two phases of different elemental composition11.

11 In this context it is worthwhile noting that in the laser-pulse experiments carried out to investigate the Bredig
transition [8] this was always produced in UO2 samples sintered at low densities, whilst in high-density samples
the transition appeared only after several repeated shots. This observation was made by the authors of the above
mentioned article with the remark that high porosity favours homogeneous sample vaporization, and hence minimizes
possible composition gradients. Yet, in the light of the present analysis, the suppression effect can be more
realistically attributed to the difficulty of producing a sufficiently rapid bulk expansion in dense samples, compared
to the case where large sintered porosity makes it much easier.
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This regime of ‘frozen diffusion’ is like the ‘forced congruent mode’ in solid–liquid or
liquid–vapour transitions (see [11]). To avoid confusion about this kind of transitions, we shall
refer below to this regime for Bredig-like transitions as the ‘fast transition mode’ (FTM).

The opposite limiting case corresponds to long time of measurement and/or to very fast
diffusion processes. We shall refer to this regime, where τM 	 τD, as the ‘phase equilibrium
mode’ (PEM). In the case of PEM, only the behaviour of the free energy of the solid
determines the kind of phase transition, and its minimum with respect to the concentration
of possible phases is the prevailing criterion. The characteristic diffusion time τD = L2/D
depends on a size L depending on the macroscopic structure of the sample and on the
diffusion coefficient D. In measurements based on quenching or laser impulses, experimental
conditions are probably closer to the FTM than to the PEM regime. In this regard, some
predictions made for the FTM regime are discussed here below. This means that we are
looking for (partial) equilibrium corresponding to a minimum of free energy with respect to
internal variables (ϕ, ε) at given P , T and U/O ratio.

For non-stoichiometric solid the above scheme should be extended to account for
additional dependence on stoichiometry. The final equation adopted for the short-range
contribution �F (R)

x,ϕ,ε is as follows:

�F (R)
x,ϕ,ε = �F (R)

anh + �F (R)
int + Cx x x2, (50)

where �F (R)
int is the defect interaction contribution equation (40), �F (R)

anh is the anharmonic
correction equation (38), and the value of the empirical constant Cx x is to be established from
experimental data.

11. Calibration procedure

The problem of calibration of a many-parameter non-linear EOS is considerably complex.
Usually, the results of calibration depend on the form of functional involved in the
minimization procedure (e.g., least squares estimators) as well as on the set of experimental
data chosen. Normally, it is impossible to prove the uniqueness and global property of the
found functional minimum. Therefore, additional criteria such as the correspondence to the
limiting case of the ideal solid and the reasonable values of the parameters found may become
important. A two-step calibration procedure was adopted. In the first step the parameters for
the stoichiometric compounds were determined, and, subsequently, the parameters related
to non-stoichiometric states were fixed. The sensitivity study performed has shown that
the results are almost insensitive to values of some parameters. For example, any value of
parameter n in equation (26) in the range from 5 to 12 leads to almost the same predicting
quality. This is apparently related to the narrow range of inter-ionic distances corresponding
to the experimental range of densities considered. The value of this parameter was eventually
fixed at n = 9. The second anharmonic parameter A2 appears to be insignificant and was set
to zero.

Five parameters were fitted in the first calibration step (imperfect stoichiometric crystal):
Cn , equation (29); B , equation (30); A1 and W , equation (27); α1, equation (38). The
following known properties of solid UO2 (at zero pressure) were used:

• density as a function of temperature (1500 K < T < 3120 K);
• Gibbs potential at the melting temperature;
• entropy at the melting temperature and at T = 2500 K.

In the second step, the remaining parameters (effective charges Z2, Z3, Z4 and Cx x ) have
been determined by using
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Table 2. Parameters of EOS within model of imperfect and non-stoichiometric solid.

Parameter Value Source

Cn/k 1.24 × 107 K Density, Gibbs potential

B 0.41 (cm3/mol)1/3 and entropy of
W −0.23 stoichiometric solid
A1 7.9
α1 92.0
Z2 −2.24 Oxygen pressure,
Z3 2.52 concentration of vacancies
Z4 3.85 and pressure of uranium

Cxx /k 2 × 104 K vapour at triple point

Table 3. Adopted parameters of the λ-transition and defect interaction.

Parameter Description Value

TC Temperature of transition in stoichiometric solid 2670 K
Hf Enthalpy of vacancy formation 3.67 eV
Sf/R Entropy of vacancy formation 7.22
A20 Defect interaction (equation (41)) −37.8
A21 Defect interaction (equation (41)) 15 eV
B Defect interaction (equation (42)) 2 + x

• the estimated value of the oxygen pressure at Tm(6 × 10−5 bar),
• the concentration of vacancies at T = 2700 K [34] and
• the pressure of uranium vapour at the triple point T = 2700 K [32].

The results are presented in table 2.
The adopted model parameters, including the phase transition, are listed in table 3. We

assumed the measured temperature of the pre-melting transition in stoichiometric solid UO2
equal to TC = 2670 K, and the enthalpy of defect formation at this temperature Hf = 3.67 eV.
The corresponding entropy and equilibrium constant for formation have been determined from
the critical conditions equations (45)–(47). These data were used to fit the values of the
effective charges of ions and vacancies. These values also determine the equilibrium constant
for the disproportionation reaction equation (10). No additional parameters to describe the
uranium disproportionation reaction were needed.

12. Comparison with experimental data and discussion

A comparison of the predictions of the present EOS with existing data for stoichiometric UO2
solid is presented in table 4 and in figures 3 and 4.

The density of the stoichiometric solid in the temperature range 1500 K–3120 K is in
good agreement with recommended data [32]. All examined model versions represent very
well the temperature dependence of density for x = 0.

Predictions of the Gibbs potential are also in good agreement with the reference IVTAN
database [32] over the temperature range 1500–3120 K (note that only one value (at Tm) was
used for calibration).

Two values of entropy (at T = 2500 K and Tm) have been used for calibration. Good
agreement of the data related to the defect interaction model and the IVTAN database is
found except in the region close to the λ-transition temperature, since this transition was
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Figure 3. Expansivity of stoichiometric UO2 solid. The sharp blip of the αT(T ) dependence is
associated with the λ-transition.
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Figure 4. Heat capacity of stoichiometric solid.

not considered in the database. Consequently, the temperature dependence of the enthalpy
exhibits similar deviations. In this view, the comparison of predicted and measured values of
Cp presented in figure 4 is explanatory. We did not use Cp for calibration, leaving it for a
check of the overall prediction quality.

The results are in good agreement with the experiments of Ronchi et al [8] at T < 2670 K,
though lower values of Cp are predicted at higher temperatures.
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Table 4. Thermodynamic properties of stoichiometric uranium dioxide at zero pressure as
calculated from the imperfect-solid model. The potentials are referred to the pure ideal-gas ionic
state of U and O. The data used for calibration are printed in bold characters.

T Density δ αT βT CP G H S

(K) (g cm−3) (%) (10−5 K−1) (10−12 Pa−1) (J kg−1 K−1) (kJ kg−1) (kJ kg−1) (kJ kg−1 K−1)

1500 10.573 −0.07 4.46 7.49 340.1 −8 528.6 −7385 0.7622
2000 10.326 0.00 5.03 8.30 387.6 −8 936.3 −7205 0.8658
2200 10.220 0.00 5.32 8.69 419.2 −9 113.3 −7124 0.9042
2400 10.108 −0.02 5.65 9.14 467.7 −9 298.0 −7036 0.9425
2500 10.050 −0.03 5.84 9.38 507.9 −9 393.2 −6987 0.9624
2600 9.991 −0.03 6.09 9.65 593.2 −9 490.5 −6933 0.9837
2630 9.972 −0.03 6.21 9.73 661.0 −9 520.1 −6914 0.9908
2650 9.960 −0.03 6.35 9.79 775.0 −9 540.0 −6900 0.9962
2660 9.953 −0.03 6.54 9.82 943.5 −9 550.0 −6892 0.9994
2670 9.946 −0.01 — 9.86 — −9560.0 −6 872 1.0068
2680 9.939 0.00 6.54 9.89 668.6 −9 570.1 −6861 1.0108
2700 9.926 0.00 6.38 9.95 526.5 −9 590.3 −6850 1.0151
2720 9.913 0.00 6.36 10.01 492.7 −9 610.7 −6839 1.0188
2750 9.894 0.00 6.39 10.10 473.3 −9 641.3 −6825 1.0241
2800 9.863 0.00 6.48 10.26 463.1 −9 692.7 −6802 1.0325
2900 9.798 0.00 6.70 10.59 462.8 −9 796.8 −6755 1.0487
3000 9.731 0.01 6.95 10.96 471.0 −9 902.5 −6709 1.0646
3100 9.663 0.02 7.23 11.35 482.5 −10 009.7 −6661 1.0802
3120 9.649 0.03 7.28 11.44 485.3 −10 031.3 −6651 1.0833

The correct approximation of the crystal density guarantees the overall good reproduction
of the thermal expansion coefficient as a function of temperature. At the same time, the model
predicts a narrow and high peak in the vicinity of the λ-transition (see figure 3). Unfortunately,
sufficiently accurate values of the crystal compressibility are not available for comparison.
Nevertheless the agreement with best estimates [33] is satisfactory.

Predictions of the present EOS for non-stoichiometric UO2+x are presented in figures 1
and 5. Only a few data are available for comparison. In figure 1 the density of the
non-stoichiometric solid is plotted against the O/U ratio. The solid black line in the
hyperstoichiometric region represents Perio’s empirical equation [35]

a(Å) = 5.4690 − 0.12x, (51)

deduced from experimental data at T = 273 K. The predicted behaviour of the solid density
is very similar to that observed at low temperatures.

There are no discontinuities in the Gibbs potential dependence except for small kinks
at concentrations corresponding to the λ-transition. The behaviour of the oxygen potential
for non-stoichiometric solid UO2+x is presented in figure 6. The curves are plotted over an
O/U range where existence of a solid solution is experimentally proved. A few comments are
here in order concerning the predicted behaviour of the oxygen equilibrium pressure at lower
temperatures. Some curves exhibit a negative slope in a distinct O/U interval ending with a
minimum. This interval corresponds to metastable states. Only at higher O/U does the oxygen
pressure become monotonically increasing. In this interval of instability two phases may be
formed separated by a first-order transition.

The concentration of vacancies ϕ in the FTM regime exhibits remarkable discontinuities
in the transition point (ϕ = 0.108 in the ‘disordered phase’ and ϕ = 0.0593 in the
‘ordered phase’, i.e., is about 50% less). The density as a function of composition presents
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Figure 5. Heat capacity of non-stoichiometric solid. The locus of the Cp maxima is referenced
here as a line of diffuse transition.
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Figure 6. Oxygen potential of non-stoichiometric UO2 solid.

discontinuities as well, but they are relatively small (ρ = 9983 kg m−3 in the ‘ordered phase’
and ρ = 9987 kg m−3 in the ‘disordered phase’, i.e., 0.04%).

For hyperstoichiometric compositions the model predicts no λ-transition but a ‘diffuse
transition’, in accordance with the experimental observation. The points of maximal heat
capacities on the isotherms are shown in figure 5. The lines of the λ- and diffuse transitions
are plotted in figure 7. The solid line corresponds to the λ-transition in the FTM regime,
the dashed one to the location of the diffuse transition. The vertical bars represent the
concentration of the coexisting phases in the PEM regime. The cross (T = 2904 K,
O/U = 2.0366) indicates the predicted hypothetical PEM critical point.
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13. Conclusions

A general model for the Helmholtz free energy of non-stoichiometric imperfect solids was
developed, applied and tested on UO2+x . The adopted variational approach enables the
thermal, caloric and oxidation properties of non-stoichiometric solids to be described with
a single EOS model. This also makes it possible to express the equilibrium constants both of
defect formation and of disproportionation reactions in an explicit form, by using analytical
expressions for the free energy.

A general equation for the ‘oxygen potential’ was derived, and the behaviour of the
oxygen pressure in both hypo- and hyperstoichiometric regions of UO2+x can be predicted.

The approximate method to account for Coulomb interaction of defects provides explicit
expressions for its contribution to the free energy of imperfect and non-stoichiometric solid,
depending on the effective charges of ions and vacancies.

The model was extended to include short-range interactions between defects in imperfect
solid UO2+x . Frenkel defects were treated as quasi-dipoles with short-range attractive
interactions between vacancies and interstitial ions and short-range repulsion between two
vacancies and two interstitials. This approach, adopted to analyse the concentration
dependence of short-range inter-defect forces, represents a basic underlying feature of the
defect interaction model. The model describes this physical configuration in terms of quasi-
dipoles taking into account pair and triple short-range interactions. Under some conditions, it
predicts a ‘critical point’ which can be regarded as a second-order phase transition akin to the
λ-transition observed in fluorite structures. These conditions were analysed and parameters
of the model and phase transition have been determined.

A two-stage calibration procedure was developed for the non-stoichiometric solid model,
and the EOS parameters have been determined by fitting existing experimental and reference
data, so that the EOS correctly predicts the behaviour of the thermodynamic functions in
non-stoichiometric and imperfect ionic solid, including the pre-melting λ-transition.

In particular, the density, Gibbs energy, entropy, thermal expansion and oxygen potential
of non-stoichiometric UO2+x have been compared with experimental data. Heat capacity and
compressibility have been used for testing the overall quality of the model predictions.
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A few words are finally in order concerning the adopted formulation of the defect
interactions.

The approximate equation (40) is actually valid only in the stoichiometric case; it
was, however, slightly modified by introducing a stoichiometry dependence of parameter B
(table 3). The value of the constant A2 in equation (40) was deduced from experimental
data of the stoichiometric dioxide, but the parameters A20 and A21 defining its temperature
dependence, equation (41), are still unknown. This point is important since different choices
of A21 lead to different functional dependences of TC(x) in the non-stoichiometric solid.
Unfortunately, we still do not have sufficient experimental data on this dependence [8].
Therefore, the crucial empirical aspects of the model are mainly associated with the values of
A20 and A21 listed in table 3. Though we believe that the proposed equations (39)–(41) are
physically sound, the values of these parameters might need a revision if some new data on
the TC(x) dependence are available in the future. As for the present state of experience and
comprehension, the current calibration seems to be more appropriate for hyperstoichiometric
than for hypostoichiometric uranium dioxide.
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